

APC18T04 Series: 3.0-5.5Vin / 18A Non-Isolated Point-of-Load

The APC18 DC-DC Power Module is a high efficiency non-isolated buck converter designed for use in a wide variety of applications. Packaged in an industry standard recognized SMT footprint: 1.3" x 0.53", it works from a wide input voltage range of 3V to 5.5V and offers a wide adjustable output range of 0.75V to 3.3V through external resistor programming.

Special Features

- **Industry Standard SMT Footprint** •
- High Efficiency up to 95% at 3.3V output •
- Adjustable output through external resistor • programming
- Low output ripple and noise ٠
- **Input UVLO** •
- **Fixed Switching Frequency** •
- **Positive Enable** •
- **Remote Sense pin**

Environmental Specifications

- -40°C to 85°C Operating Temperature
- -40°C to 125°C Storage Temperature
- MTBF > 1 million hours

Electrical Parameters

Input **Input Range Input Surge**

3V to 5.5VDC 6V / 100ms

Control

Enable **TTL compatible** (Positive or Negative Logic Enable Options)

Output

Load Current Line/Load Regulation < 0.5% V₀ **Ripple and Noise Output Voltage Adjust Range Transient Response**

Up to 18A max ($Po \le 60W$) 50mV_{P-P} max

0.75 -3.3Vo 300mV deviation (typical) 50% load change 25µs settling time (typical) +10%V0 **Remote Sense Over Current** 150% Io 120 °C max **Over Temperature**

Protection

Protection

Safety

UL + cUL 60950, Recognized EN60950 through TUV-PS

Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings can cause permanent damage to the converter. Functional operation of the device is converter is not implied at these or any other conditions in excess of those given in the operational section of the specs. Exposure to absolute maximum ratings for extended period can adversely affect device reliability.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Input Voltage						
Continuous	All	V _{IN}	-	-	6	Vdc
Transient (100ms)		V _{IN, trans}	-	-	-	
Isolation Voltage						
Input to Output	All		NA	-	-	
Operating Temperature	All	Та	-40	-	85	°C
Storage Temperature	All	T _{STG}	-40	-	125	°C
Operating Humidity	All	-	10	-	85	%
Max Voltage at Enable Pin	All		-	-	15	Vdc
Max Output Power			-	-	60	W

INPUT SPECIFICATION

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage Range	All	V _{IN}	3.0	3.3 / 5.0	5.5	Vdc
Input Under-Voltage Lock-out T ON Threshold	All		2.7	2.9	3.0	Vdc
T_OFF Threshold	7 111		2.4	2.6	2.7	vac
Input Current ¹	All	I _{IN-MAX}	-		18	Α
$(V_{IN} = V_{IN, Min}; I_O = I_{O, Max})$						
Max P_{diss} @ $I_0 = 0A$	3.3Vo		-	-	0.8	W
$(\mathbf{V}_{\mathrm{IN}} = \mathbf{V}_{\mathrm{IN, Nom}})$	0.75Vo		-	-	0.5	
Input Ripple Current ²	All	I _{I1}	-	100	150	mAp-p
5Hz to 20MHz						
Inrush Transient	All	I ² t			0.1	A^2s

Electrical Specifications (continued)

OUTPUT SPECIFICATIONS

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set point		V _{O,SET}	0.74	0.75	0.76	Vdc
$V_{IN} = V_{IN, MIN}$ to $V_{IN, MAX}$;		~,~				
$I_{O} = I_{O,Max}$						
Output Regulation						
Line: $V_{IN} = V_{IN, min}$ to $V_{IN, max}$	All	-	-	-	0.5	%
Load: $I_O = I_{O, \min}$ to $I_{O, \max}$	All	-	-	15	30	mV
Temp: $T_A = -40$ °C to $+85$ °C	All	-	-	-	0.5	%
Ripple and Noise ³	All	-	-	25	50	mVp-p
Peak-to-Peak: (5Hz to 20MHz)						
Output Current ⁴	All	Io	0	-	18	А
External Load Capacitance						
Cap $ESR \ge 1 m\Omega$	All				1000	μF
Cap $ESR \ge 10 \text{ m}\Omega$					5000	μF
Output Current-limit Inception ⁵	All	I _O		150	250	%Io
Over Temperature Range ⁵ (AVG. PCB TEMP, measured at R11 location)	All		100	110	120	°C
Efficiency	0.75V	η	80	82	-	%
$V_{IN} = 5V_{IN-NOM}$, $I_O = I_{O,MAX}$;	1.20V	η	85	87	-	%
T _A =25°C, 200LFM	1.50V	η	87	89	-	%
	1.80V	η	88	90	-	%
F	2.50V	η	91	92.5	_	%
	3.30V	η	93	95	-	%
Output voltage rise time						
$V_{IN} = V_{IN-MIN to} V_{IN-MAX}$	All	-	-	3	6	ms
Enable to Output Turn-ON Delay	4.11					
$V_{IN} = V_{IN-MIN to} V_{IN-MAX}$	All	-	-	-	14	ms
$I_{O} = I_{O,MIN to} I_{O,MAX}$	All		250	200	250	1-11-
Switching Frequency		-	250	300	350	kHz
Output Turn-on Overshoot	All	-	-	-	2	%Vo
Output Turn-off undershoot					-0.5	V
(Passive Resistive Full Load)						
Output Enable ON/OFF						
Positive Enable						
Enable Pin Voltage: Mod-ON	All	-	2.4	-	15	V
Mod-OFF		-	0	-	0.8	V

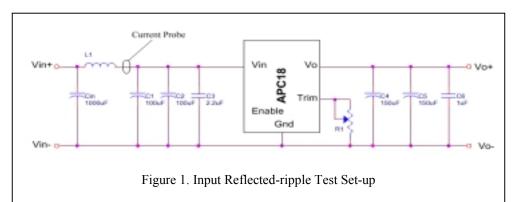
Electrical Specifications (continued)

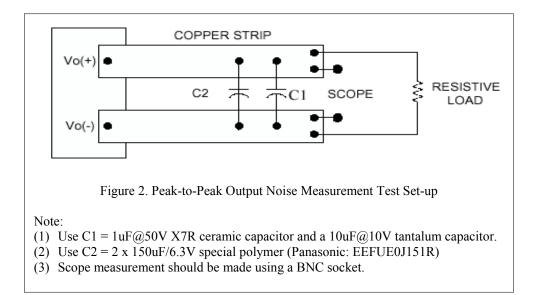
OUTPUT SPECIFICATIONS

Parameter	Device	Symbol	Min	Тур	Max	Unit
Dynamic Response ($C_0 = 10 \mu F$ Tantalum + 1 μF Ceramic) Load Change of 50% step anywhere between 10% to 100% of rated load	$\Delta I_{O}/\Delta t$	-	-	2.5	-	A/µs
Peak Deviation	All	-	-	300	350	mV
Settling Time to V _{O, Nom} <5% Peak deviation		-	-	25	50	μs
Dynamic Response ($C_0 = 150 \mu F$ x2 Special Polymer Aluminum Capacitors) Load Change of 50% step anywhere between 10% to 100% of rated load	$\Delta I_{O}/\Delta t$			2.5		A/µs
Peak Deviation						mV
Settling Time to V _{O, Nom} <5% Peak deviation	All			150 150	$\frac{200}{200}$	mν µs
Output Voltage Trim Range ⁶	All		0.75	150	3.63	V
Remote Sense	All			-	10%	V

NOTE: 1. The converter is not internally fused.

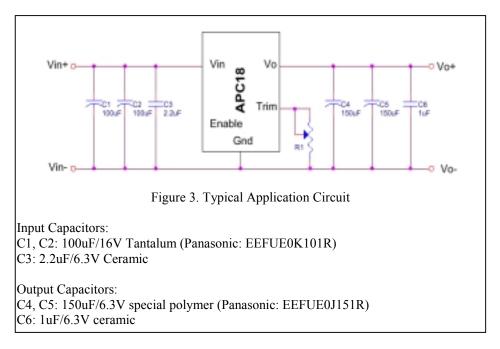
- 2. External input capacitance required. See Figure 1.
- 3. Refer to Appendix A3 for the output ripple and Noise Test Measurement Setup.
- 4. Output current limited by 60W/Vo. Output Power Derating applies at elevated temperature. See Thermal Derating Curves.
- 5. OCP and OTP are in hiccup mode. The converter will auto restart once the fault is removed.
- 6. The voltage difference between input and output must be greater than 0.7V.




Electrical Specifications (continued)

SAFETY AGENCY / MATERIAL RATING / ISOLATION

Parameter	Device	
Safety Approval	All	UL/cUL 60950, Flammability and Temperature Rise,
		TUV EN 60950
Material Flammability Rating	All	UL94V-0
Input to Output Insulation Type	All	Non-Isolated


Measure input reflected current with a simulated source inductance L1 of 1uH. Capacitor Cin offsets possible battery impedance. Measure current as shown above.

Typical Application Circuit

Enable Pin

The converter comes with an Enable pin primarily used to turn ON/OFF the converter. The converter is disabled (OFF) when the voltage across the Enable pin and ground is between 0V to 0.8V. The converter is Enabled (ON) when the voltage across the Enable pin and ground is between 2.4V to 15V (or the Enable Pin is left open).

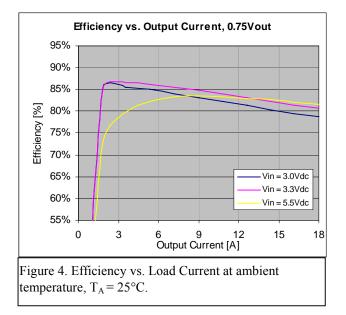
Output Trim

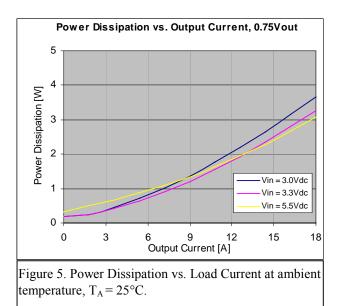
Output voltage adjustment is accomplished by connecting an external resistor between the Trim Pin and Ground Pin terminals. Resistance and Output voltage relationship is established by Equation 1. If Trim pin is left open – default $V_0 = 0.75V$

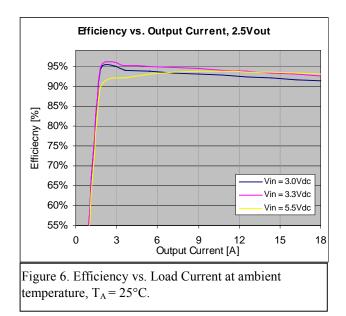
TRIM-UP EQUATION:

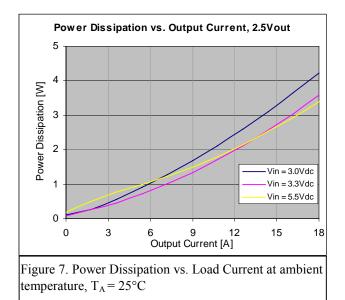
$$R_{\rm min} = \left(\frac{21070}{V_o - 0.7525} - 5110\right)\Omega$$
 (1)

Where R_{trim} is the resistance value in ohms and V_0 in Volts is the output voltage desired.

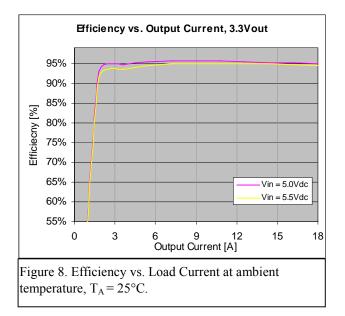

Table Rtrim values for different output voltage adjustment

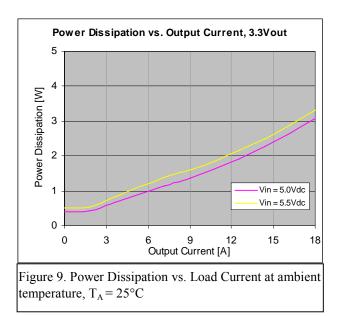

Vo (V)	0.75	1.2	1.5	1.8	2.1	2.5	3.3
Rtrim (K Ω) from Equation (1)	open	41.97K	23.08K	15K	10.53K	6.95K	3.16K
Rtrim (K Ω) from E96	open	42.2K	23.2K	15K	10.50K	6.98K	3.16K

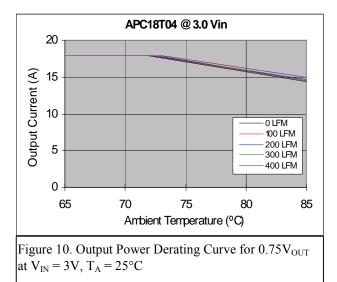


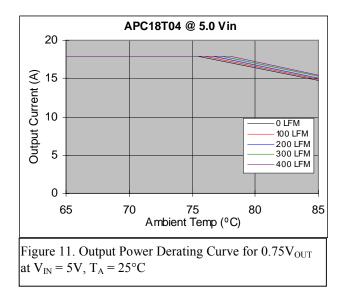


Performance Curves









<u>Performance Curves (continued)</u>

Performance Curves (continued)

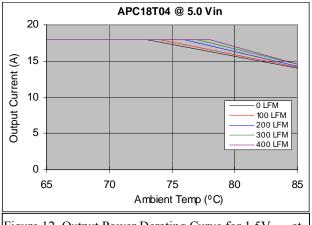
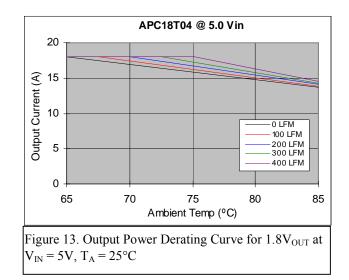
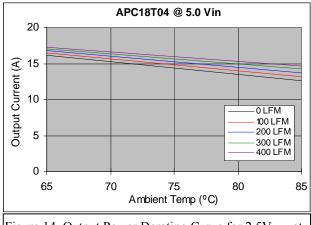
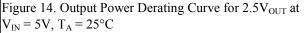
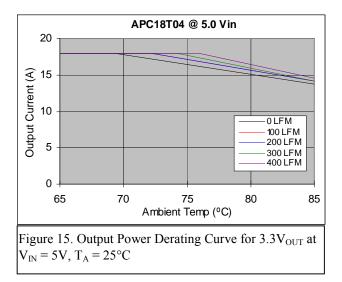
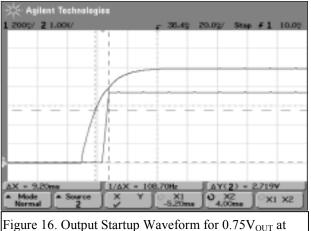
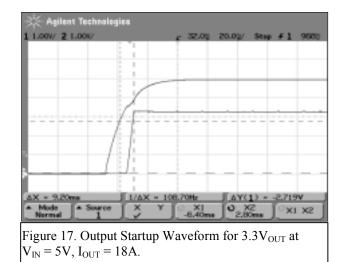
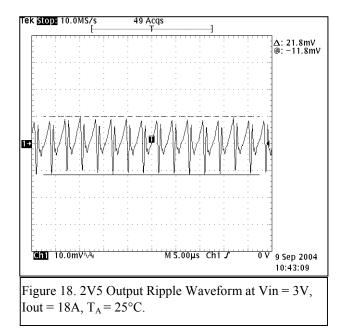
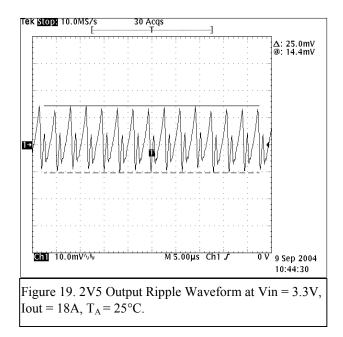






Figure 12. Output Power Derating Curve for $1.5V_{OUT}$ at $V_{IN} = 5V$, $T_A = 25^{\circ}C$

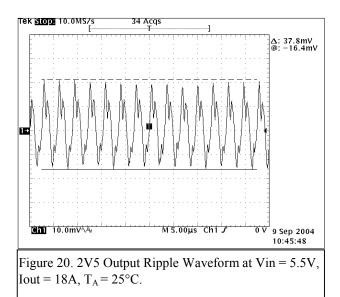


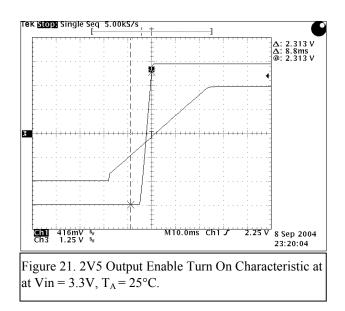


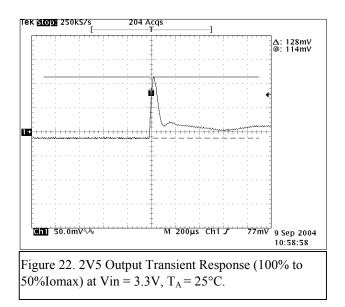


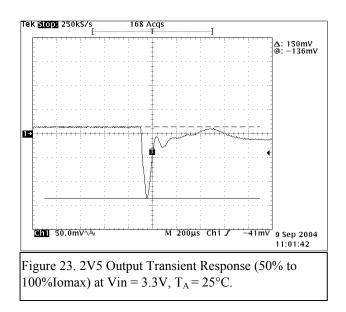

<u>Performance Curves (continued)</u>

 $V_{IN} = 5V$, $I_{OUT} = 18A$.

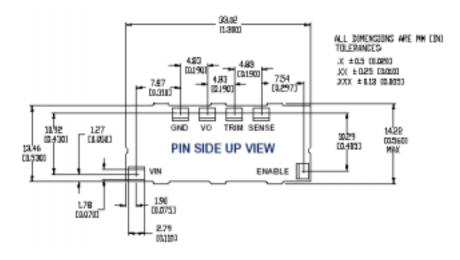








<u>Performance Curves</u> (continued)

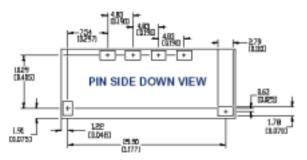


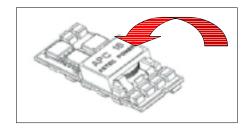
Mechanical Specifications

Parameter	Device	Symbol	Μ	lin	Тур	Max	Unit	
Dimension	All	L		-	-	1.3 [33.02]	in [mm]	
		W		-	-	0.53 [13.46]	in [mm]	
		Н		-	-	0.33 [8.33]	in [mm]	
Weight	All			-	5.8 [0.21]	-	g [oz]	
PIN DESIGNATION								
V_{IN}	+Inp	+Input Voltage		SENSE		+Output Sense Pin		
GND	Return f	rn for V_{IN} and V_O		TRIM		V ₀ Adjust		
Vo	+	Output		EI	NABLE	ON/OFF		

Recommended PAD Layout

PAD Size MIN: 1.6 x 2.8 mm [0.065 x 0.110 inches] REC: 1.8 x 2.8 mm [0.070 x 0.110 inches] MAX: 2.0 x 3.0 mm [0.080 x 0.130 inches]




Figure 24. Mechanical Outline

RECOMMENDED LOCATION FOR PICK AND PLACE

The flat top surface of the large inductor (topside of the board) provides a versatile and convenient way of picking up the module (See Figure 25). A 6-7mm outside diameter nozzle from a conventional SMD machine is recommended to attain maximum vacuum pick-up. Nozzle travel and rotation speed should be controlled to prevent this off-centered picked-up module from falling off the nozzle. The use of vision recognition systems for placement accuracy will be very helpful.

REFLOW NOTES / RECOMMENDATIONS

- 1. Refer to the recommended Reflow Profile per Figure 26. Profile parameters exceeding the recommended maximums may result to permanent damage to the module.
- 2. The module is recommended for topside reflow process to the host card. For other orientations, contact factory.
- 3. In the event that the module needs to be desoldered from the host card, some pins may be detached from the module.

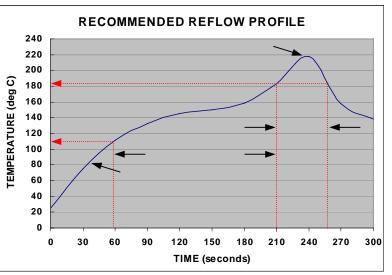


Figure 26. Recommended Reflow profile.

PART NUMBERING SCHEME

	O/P CURRENT	O/P VOLTAGE	I/P Voltage			OPTIONS
APC	18	т	04	-	9	(J)
	18 = 18A	T = 0.75 – 3.3V	04 = 3.0 − 5.5V		9 = output adjust	J = Tray packaging Non "J" = T&R packaging

Please call 1-888-41-ASTEC for further inquiries or visit us at <u>www.astecpower.com</u>